首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   21篇
  国内免费   5篇
工业技术   394篇
  2023年   4篇
  2022年   8篇
  2021年   18篇
  2020年   14篇
  2019年   11篇
  2018年   24篇
  2017年   14篇
  2016年   25篇
  2015年   5篇
  2014年   29篇
  2013年   47篇
  2012年   20篇
  2011年   44篇
  2010年   13篇
  2009年   14篇
  2008年   21篇
  2007年   11篇
  2006年   12篇
  2005年   5篇
  2004年   8篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1972年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有394条查询结果,搜索用时 562 毫秒
51.
Alkylenediamides and Alkylenediisoimides from Ethyleneimino Carboxylic Acids and Ethyleneimino Dicarboxylic Acids Preparation and properties of some alkylenediamides from β-ethyleneiminopropionic acid and ethyleneiminosuccinic acid as well as of two alkylenediisoimides of ethyleneiminosuccinic acid are described.  相似文献   
52.
In this work, the parameters of cobalt oxide suspension such as conductivity, zeta potential, particle size, stability, and finally the electrophoretic behavior of particles in the absence and presence of polyethylenimine (PEI) in acetone medium were investigated. Also, the effects of washing on the stability and electrophoretic deposition of Co3O4 were studied. Characterization of the obtained layer by optical microscopy revealed that there was no deposition in the suspension without PEI, while a uniform layer was formed in the presence of PEI additive. Scanning electron microscopy (SEM) results confirmed the uniformity of layer obtained in acetone using PEI additive. Moreover, SEM results demonstrated that more porous microstructures were obtained at longer deposition durations. The difference in the porosity of the layers, as indicated by the SEM micrographs, is attributed to increase in the deposition time.  相似文献   
53.
Hermia’s models for cross flow filtration were used to investigate the fouling mechanisms of mullite-alumina ceramic membranes in treatment of oily wastewaters in a hybrid microfiltration-powdered activated carbon process (MF-PAC). Results show that cake filtration model can be applied for prediction of permeation flux decline for MF and MF-PAC process up to 400 ppm PAC. The complete pore blocking model and the intermediate pore blocking model can predict permeation flux decline with time for MF-PAC with 800 and 1200 ppm PAC respectively. Average error for prediction of permeation flux with cake filtration model is 2.19% for MF process and 2.16, 2.06 and 1.31% for MF-PAC process with 100, 200 and 400 ppm PAC respectively. Also for MF-PAC process with 800 and 1200 ppm PAC, average error for prediction of permeation flux with complete pore blocking model and intermediate pore blocking model was 6.11 and 6% respectively.  相似文献   
54.
In the present investigation, the G max criterion, which is based on the elastic strain energy principle, is extended to study the fatigue crack growth characteristics of mixed mode cracks. A modification has been made to this criterion to implement the plastic strain energy and, hence, a new elasto-plastic energy-based model is presented. Subsequently, the proposed model is employed to predict fatigue crack growth in rectangular steel plates under complex stress states. The results obtained using the elasto-plastic energy model proposed are compared with those obtained using the commonly used Paris law and our experimental data.  相似文献   
55.
This paper presents a high step‐up soft switched dc–dc converter having the feature of current ripple cancelation in the input stage that is specialized for power conditioning of fuel cell systems. The converter comprises a special half‐bridge converter and a rectifier stage based upon the voltage‐doubler circuit, in which the coupled‐inductor technology is amalgamated with switched‐capacitor circuit. The input current with no ripple is the principal characteristics of this topology that is achieved by utilizing a small coupled inductor. In addition, the low clamped voltage stress across both power switches and output diodes is another advantage of the proposed converter, which allows employing the metal–oxide–semiconductor field‐effect transistors with minuscule on‐state resistance and diodes with lower forward voltage‐drop, and thereby, the semiconductors' conduction losses diminish considerably. The inherent nature of this topology handles the switching scheme based on the asymmetrical pulse width modulation in order for switches to establish the zero voltage switching, leading to lower switching losses. Besides, because of the absence of the reverse‐recovery phenomenon, all diodes turn off with zero current switching. At last, a 250‐W laboratory prototype with the input voltage 24 V and output voltage 380 V is implemented to verify the especial features of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
56.
In this study, the artificial neural network (ANN) and the Taguchi method are employed to optimize the radial force and strain inhomogeneity in radial forging process. The finite element analysis of the process verified by the microhardness test (to confirm the predicted strain distribution) and the experimental forging load published by the previous researcher are used to predict the strain distribution in the final product and the radial force. At first, a combination of process parameters are selected by orthogonal array for numerical experimenting by Taguchi method and then simulated by FEM. Then the optimum conditions are predicted via the Taguchi method. After that, by using the FEM results, an ANN model was trained and the optimum conditions are predicted by means of ANN (using genetic algorithm as global optimization procedure) and compared with those achieved by the Taguchi method. The optimum conditions are verified by FEM, and good agreement is found between the two sets of results.  相似文献   
57.
In this study, a set of constitutive equation corrected for deformation heating is proposed for a near equi-atomic NiTi shape memory alloy using isothermal hot compression tests in temperature range of 700 to 1000 °C and strain rate of 0.001 to 1 s−1. In order to determine the temperature rise due to deformation heating, Abaqus simulation was employed and varied thermal properties were considered in the simulation. The results of hot compression tests showed that at low pre-set temperatures and high strain rates the flow curves exhibit a softening, while after correction of deformation heating the softening is vanished. Using the corrected flow curves, the power-law constitutive equation of the alloy was established and the variation of constitutive constants with strain was determined. Moreover, it was found that deformation heating introduces an average relative error of about 9.5% at temperature of 800 °C and strain rate of 0.1 s−1. The very good agreement between the fitted flow stress (by constitutive equation) and the measured ones indicates the accuracy of the constitutive equation in analyzing the hot deformation behavior of equi-atomic NiTi alloy.  相似文献   
58.
Abstract: The propagation of fatigue cracks under constant amplitude cyclic loading was studied in welded stiffened steel plates. The residual stresses in the stiffened plates were measured using the neutron diffraction strain‐scanning technique. The neutron diffraction measurements indicated that, in general, the residual stresses were tensile near the welded stiffeners and compressive between the stiffeners and ahead of the starter notch tips. Fatigue testing indicated that the fatigue crack growth rates of the stiffened plates were, in general, lower than that of a corresponding unstiffened plate, especially near the notch tips, where compressive residual stresses existed. An analytical method, using Green's function, was developed to predict the fatigue crack growth rates. Reasonable accuracy was obtained.  相似文献   
59.
Today the utilization of solar energy to split water and its conversion to hydrogen and oxygen has been considered as a powerful way to solve the environmental crisis. Hierarchical porous nanostructured ZnO and ZnO/reduced graphene oxide (rGO) composite photoanodes are synthesized by innovated sol-gel method using triethylenetetramine (TETA) as a stabilizer. The hierarchical porous ZnO structure containing large agglomerates each consisting of tiny nanoparticles are formed. The X-ray diffraction analysis and Raman spectroscopy confirm the in-situ reduction of graphene oxide sheets during synthesis and formation of ZnO/rGO nanocomposite. Although the band gap and transmittance of the porous nanocomposites do not dramatically change by rGO addition, the main photoluminescence peak quenches entirely showing prolonging exciton lifetime. The ZnO/rGO porous structure achieved remarkably improved current density (1.02 mA cm?2 at 1.5 V vs. Ag/AgCl) in 1 wt% rGO, up to 12 times higher compared to the bare ZnO (0.09 mA cm?2 at 1.5 V vs. Ag/AgCl), which attributes to positive role of ZnO hierarchical porous structure and rGO electron separation/transportation. These findings provide new insights into the broad applicability of this methodology for promising future semiconductor/graphene composite in the field of photoelectrochemical water splitting.  相似文献   
60.
Many structures such as aircrafts, risers, and offshore pipelines that are in contact with fluids, become subjected to complex variable amplitude loading (VAL) stress-time histories during their service lives. As a result, the structural life assessment and damage-tolerant analyses of such structures are considered as two important design criteria. In this paper, a VAL stress-time history is used to study the fatigue life of 6061-T651 aluminum alloy, with focus on the retardation effect resulting from the applied peak tensile overload cycles (TOLCs). Various so-called “clipping” levels are tested, and the results are compared with those obtained through an analytical method, using the Willenborg retardation approach, in conjunction with the Walker fatigue crack growth model. The results would demonstrate the significant influence of the TOLC present within VAL scenarios on retarding the fatigue crack growth rate of the material. The study also investigates the influence of various clipping levels on the fatigue response of the material, also highlighting the limitations of the analytical approach in estimating the resulting crack growth rate. It is observed that the analytical method predicts a higher fatigue life for the material subjected to VAL, which is non-conservative for design purposes. Some suggestions are provided for fatigue life estimation of the material when subjected to VAL scenarios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号